Oxidized low-density lipoprotein impairs the anti-coagulant function of tissue-factor-pathway inhibitor through oxidative modification by its high association and accelerated degradation in cultured human endothelial cells.
نویسندگان
چکیده
We have examined whether oxidized low-density lipoprotein (ox-LDL) affects the function of tissue-factor-pathway inhibitor (TFPI), an anti-coagulant regulator in the extrinsic pathway of coagulation, in cultured human umbilical vein endothelial cells (HUVEC). Treatment of culture medium of HUVEC with ox-LDL, but not with native or acetylated LDLs, drastically decreased the reactivity of TFPI to its antibody specific for Kunitz domain 1 or one specific for the conformation between Kunitz 1 and 2 of TFPI, and caused a rapid, concentration-dependent decrease in the functional activity of TFPI to inhibit Factor X activation. When 5 ng of recombinant TFPI (rTFPI) was mixed with 10 microg of ox-LDL for 30 min, almost all of the rTFPI was detected in the ox-LDL fraction and no free rTFPI was observed on non-denaturing PAGE, in contrast with the virtual absence of rTFPI in the native LDL fraction. Ox-LDL decreased the antigen level of TFPI in the lysate of HUVEC in a time-dependent manner. It did not affect the mRNA level, but ox-LDL-dependent reduction of the TFPI antigen level in HUVEC was reversed by the simultaneous treatment of ox-LDL with bafilomycin A1, an inhibitor of the lysosomal proton pump. These results indicate that ox-LDL lessens the anti-coagulant function of TFPI through both oxidative modification and accelerated degradation of the molecule outside and inside HUVEC respectively.
منابع مشابه
Effect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملCompare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملOxidative modification of low density lipoproteins by human polymorphonuclear leukocytes.
Oxidatively modified low density lipoproteins are thought to play an important role in the generation of macrophage-derived foam cells in early atherosclerotic lesions. Cultured endothelial cells, monocytes, macrophages and smooth muscle cells can modify low density lipoproteins, either by a free radical mechanism or by the action of lipoxygenases. Previous studies demonstrated that activated h...
متن کاملO 4: Kynurenine Impairs MbMEC Function in Vitro Through Arylhydrocarbon Receptor Activation
In the development of neuroinflammatory diseases, alterations of the blood brain barrier (BBB) represent key events. The integrity of the BBB is partially maintained by endothelia cells (ECs), since they actively limit the transmigration of immune cells. However, the factors that cause endothelial cells to develop an immune cell-permissive phenotype are poorly understood. In general, it has bee...
متن کاملOxidative modification of beta-very low density lipoprotein. Potential role in monocyte recruitment and foam cell formation.
Oxidative modification of low density lipoprotein (LDL) generates a form that is degraded much more rapidly by macrophages and may thus be more atherogenic than unoxidized LDL. Recently, we provided evidence that oxidative modification of LDL may play a significant role in the generation of fatty streaks in the LDL receptor-deficient rabbit. The major lipoprotein in cholesterol-fed animals is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 352 Pt 2 شماره
صفحات -
تاریخ انتشار 2000